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ABSTRACT 

Weal t ime work c e l l  pressures are incorpor- 
ated i n t o  a dynamic analysis o f  the gas seal ing 
g r i d  i n  Rotary Combustion Engines. The analysis 
which u t i l i z e s  on ly  f i r s t  p r i n c i p a l  concepts ac- 
cmints f o r  apex seal separation from the t ro -  
choidal bore, apex seal s h i f t i n g  between the 
sides o f  i t s  r e s t r a i n i n g  channel, and dpex seal 
r o t a t i o n  w i t h i n  the r e s t r a i n i n g  channel. The 
r e s u l t s  p red ic t  t h a t  apex seals do separate from 
the t rochoidal  bore and s h i f t  between the  sides 
o f  t h e i r  channels. The r e s u l t s  a lso show t h a t  
these two motions are r e g u l a r l y  i n i t i a t e d  by a 
sral ro ta t i on .  
seals compares favorably w i t h  experimental re -  
su l t s .  F r i c t i o n a l  losses associated with the 
seal inq g r i d  are also ca lcu lated and compare 
w e l l  w i t h  measurements obtained i n  a s i m i l a r  en- 
gine. A comparison o f  f r i c t i o n a l  losses when 
using s tee l  and carbon apex seals has a lso been 
made as we l l  as f r i c t i o n  losses for s ing le  and 
duel  side sealing. 

The predic ted motion o f  the apex 

BEFORE STARTING A DISCUSSION o f  the fac to rs  i n -  
volved w i th  seal ing a Rotary Combustion Engine 
(RCE) i t  i s  he lpfu l  t o  examine the standard net- 
work of seals used i n  RCEs. Referr ing t o  Fig. 1 
which was taken from Ansdale ( l ) * ,  one sees the  
long curved side seals which contact the end cov- 
ers of the cy l i nde r  and three apex seals which 
separate the three working c e l l s  o f  t he  engine. 
Examination of t h i s  seal ing network al lows appre- 
c i a t i o n  of the addi t ional  d i f f i c u l t y  involved i n  
seal ing RCEs. The long length o f  the s ide  seals 
arid the i r r e g u l a r  path traversed by the  apex 
seals present problems d i f f e r e n t  from those en- 
countered i n  seal ing rec ip roca t ing  p i s ton  en- 
gines. I n  t h i s  paper, a theo re t i ca l  dynamic 
analysis of  the forces ac t i ng  on the seals, i s  
coupled w i t h  expertmental ly obtained c e l l  Pres- 

'Numbers i n  narentheses designate references a t  
end o f  paper. 

sures t o  obta in  a f r i c t i o n  model of the gas seal- 
i n g  system. Both the  poss ib le  separation o f  the 
apex seals from the t rochoidal  bore and the f r i c -  
t i o n a l  losses associated wi th t h i s  type o f  seal- 
i n g  conf igurat ion w i l l  be examined. 

Up t o  the present t ime, documentation of the 
forces ac t i ng  on these seals has no t  appeared i n  
the l i t e r a t u r e  t o  any appreciable extent. Jones 
(2)  shows an approximate breakdown o f  f r i c t i o n  
losses a t  6000 rpm i n  a Cur t iss-Wr ight  RCl-60 
engine. Here seal f r i c t i o n  losses a te  repor ted 
t o  be about 1 112 t i n e s  the losses i n  the bear- 
ings and gears. Ymamoto ( 3 )  shows gas seal ing 
losses t o  be over 50 percent o f  the t o t a l  nor- 
malized f r i c t i o n a l  losses i n  an unspeci f ied ro-  
t a r y  engine. To the author's knowledge, no pre- 
d i c t i o n  o r  measurement o f  the f r i c t i o n  associated 
w i th  each seal ing component has been prev ious ly  
pub1 ished. 

Loss of contact between the apex seal and 
the t rochoidal  bore has been discussed by a num- 
ber of researchers. Eberle and Klomp ( 4 ) ,  have 
c i t e d  leakage past the apex seal as a poss ib le  
cause o f  higher hydrocarbon emissions and in-  
creased speci f ic  fue l  consumption. Prasse e t  a l .  
( 5 )  and Rodgers e t  a l .  (61, have r e l a t e d  seal 
separation t o  chat ter  marks which form on the 
trochoidal bore c rea t i ng  wear problems. Matsuura 
e t  a l .  ( 7 ) ,  experimental ly have shown t h a t  sepa- 
r a t i o n  o f  the apex seal from the bore does take 
place and have co r re la ted  the locat ions of these 
separations with low, non-negative, contact f o r -  
ces. Both Prasse and Matsuura use Ansdale's typ- 
i c a l  c e l l  pressure p r o f i l e  and i n e r t i a l  force re-  
la t ionshlp.  Since a component o f  the contact 
force ac t i ng  between an apex sea! and the t ro -  
choidal bore ar ises from the pressure d i f f e r e n -  
t i a l  across the apex seal, an important add i t i on  
t o  the past analyses i s  the i nc lus ion  o f  the ac- 
t u a l  d i f f e r e n t i a l  pressure data obtained under 
operating condit ions. 

EXPERIMENTAL PRESSURE MEASUREMENT 

obta in  c e l l  pressures dur ing both motoring and 
The experimental measurement system used t o  
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f i r i n g  condit ions was developed by NASA. 
t h i s  system has been discussed i n  d e t a i l  i n  a 
previous paper by Schock e t  a l .  (8). on l y  a b r i e f  
descr ip t ion w i l l  be presented here. Four pie20- 
e l e c t r i c  pressure transducers were mounted i n  a 
turbocharged 1978 Harda 12A nonemission type (no 
c a t a l y t i c  converter) engine. The locat ions of 
these transducers are shown i n  Fig. 2. Four 
transducers were used i n  order t h a t  a Continuous 
pressure versus crank angle p l o t  from a s i n g l e  
System o f  i n te res t  could be recgrded. 
the r o t o r  occupied a p o s i t i o n  where two transdu- 
cers were active, the average d i f f e rence  between 
the two transducers was ca lcu lated and used t o  
o f f s e t  the t r a i l i n g  transducer's output. A s ig-  
nal co r re la to r  was also designed t o  reduce the 
data r e s u l t i n g  from these fou r  transducers t o  
tha t  o f  the pressure ac t i ng  i n  one c e l l  dur ing a 
cmp le te  cycle. Pressures were sampled a t  2048 
+!qually spaced angular pos i t i ons  throughout the 
i080. o f  mainshaft ro ta t i on .  

Pressure versus crank angle p l o t s  f o r  a l l  
:he operating condi t ions examined have a shape 
s i m i l a r  t o  tha t  shown i n  Fig. 3. 
p i c t  the pressuce ac t i ng  i n  one working c e l l  
throughout 1080 o f  crank angle r o t a t i o n .  The 
0' crank angle reference f o r  these p l o t s  Corre- 
spond t o  the l oca t i on  where the  system o f  i n t e r -  
es t  under consideration contains a minimum volume 
and in take begins. The s i g n i f i c a n t  d i f ferences 
between the traces taken a t  t he  various operat ing 
condi t ions tested are the magnitude peak pressure 
near top-deadcenter (TDC; and the value o f  the 
in take basel ine pressure. Values f o r  the i n take  
marlifold pressure ranged from 37 kPa a t  2939 rpn, 
under motoring condi t ions t o  351.6 kPa a t  6000 
rpm whi le  turbocharged f i r i n g .  The compression- 
f i r i n g  peak pressures ranged from 682.6 kPa a t  
2939 rpm motoring t o  3061.4 kPa a t  6000 rpm fir- 
ing. 
condi t ions under which tha t  data was co l l ec ted  i s  
shown i n  Table 1. 

APEX SEAL LIFT OFF 

Since 

Whenever 

These p l o t s  de- 

A sumnary o f  the data co l l ec ted  and the 

An examination of the apex seal ing configu- 
r a t i o n  revealed tha t  there are th ree  poss ib le  
movements of the apex seal w i t h  respect t o  i t s  
channel wnich could i n i t i a t e  separation. The 
seal could: (11 s l i d e  away from the bore while 
r e t a i n i n g  contact w i t h  one o f  the channel's 
sides; ( 2 )  the seal could s h i f t  between the lead- 
ing and t r a i l i n g  edges of  i t s  channel; and (3 )  
the seal could p i vo t  about one o f  i t s  lower 
edges. I n  the case o f  the s l i d i n g  movement sep- 
a ra t i on  would automat ica l ly  occur. The other two 
i n i t i a t i n g  movements could cause a r e d i s t r i b u t i o n  
o f  t he  forces ac t i ng  on the seal r e s u l t i n g  i n  the 
seal beginning t o  s l i d e  away from the  bore. 

I n  order t o  examine the p o s s l b i l i t y  o f  these 
three movements and separation, Newton's second 
law wds employed. The forces ac t i ng  on an apex 
seal are shown i n  Fig. 4. The value o f  Fs was 
chosen by measuring the apex seal d e f l e c t i o n  a t  
25 cha rac te r i s t i c  locat ions w i t h i n  the r o t o r  
housing and then measuring the amount o f  f o rce  
requi red t o  def lect  the seal sp r ing  f o r  the given 

deflect ions. F, was determined t o  be 5.5 l b f  
and near ly  constant over the e n t i r e  operat ing 
range. This near ly  constant force i s  accounted 
f o r  by the small amount o f  r a d i a l  seal movement 
over the cyc le  and the value of t he  apex seal 
spr ing constant. The fo rce  (FN) used against 
t he  s ide seal was 5.0 I b f .  

Addi t ional  forces a r i s i n g  from r o t o r  motion 
due t o  changes i n  bearing clearance o r  thermal 
d i s t o r t i o n  o f  t he  r o t o r  housing are beyond the  
scope of t h i s  work and have no t  been included. 
I n  the analysis, the problem has been assumed t o  
be two-dimensional wi th the  forces Fc, FN, and 
FS being r e s u l t a n t  quan t i t i es .  Thei r  f r i c t i o n a l  
counterparts UCFC and YNFN were determined 
u t l i r i n g  the assumption o f  Coulomb f r i c t i o n .  The 
pressures P and Pb, are those ac t i ng  i n  the 
leading and t r a i  1 i n g  c e l l s  respect ive ly .  The 
values o f  Pa and Pb are input  t o  the analys is  
from the experimental data. They are assumed t o  
be uniform throughout the working c e l l  i nc lud ing  
the regions next t o  the seal. Sumnation o f  the 
forces i n  the c and n d i r e c t i o n s  y ie lds :  

Fc  - FN + Fc s i n  - uCFc cos v 

+ Paw[A COS B - A COS 9 - h]  

+ Pbw[A COS (D - A COS BJ (1) 

F q  = F - FC cos - uCFc s i n  9 4 uNFN S 

where here 2s i s  the angle subtended by the 
c y l i n d r i c a l  seal head and i s  equal t o  sine1 
(BIZA), w i s  the width o f  t he  ro to r ,  whi le  
i s  the angle o f  seal o b l i q u i t y  and i s  given i n  
Ansdale as: 

r - 
R + 3e COS 20 

I n  the above equation R and e def ine a 
ep i t rochoidal  c y l i n d e r  w i t h  2(R + e) as the ma- 
jor diameter and 2(R - e) the minor diameter. A 
r o t a r y  engine's (Wankel) above has a t rochojdal  
shape. A t rochoid may be generated from an ep i -  
t rochoid by maintenance o f  a constant perpendicu- 
l a r  dlstance between the two. I n  the case of a 
rotary engine th is  d is tance corresponds t o  the 
seal  head rad ius A. The major diameter o f  a 
Wankel engine I s  the term 2(R + e + A )  and the 
minor diameter 2(R - e + A). I n  Eqs. (1) and 
( 2 ) .  sea l  contact between the seal and i t s  re -  
t a i n i n g  groove was assumed t o  be per fect .  This 
assumption d isa l lows gas penetrat ion i n t o  the 
contact reg ion and assumes zero pressure ac t i ng  
on the contacted p o r t l o n  o f  the  seal. 
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ORlGlFEAL PACE 13 
OF POOR QUALiTY 

The c and ,, coordinates were assumed t o  
O r  always p a r a l l e l  and perpendicular t o  the 
seal 's sides. respect ive ly .  

The accelerat ion o f  the seal 's  cg, which was 
assumed t o  l i e  a t  one ha l f  the sea l ' s  height, was 
determined by d i r e c t  d i f f e r e n t i a t i o n  o f  t he  equa- 
t i ons  descr ib ing the epi t rochoidal  path which thc 
cg f o l l m s .  There equations are derived from the  
equation describing the t rochoidal  bore: 

D i f f e ren t i a t i on  of these equations twice r e s u l t s  
1 n: 

a = +'[9e sin3a + (R - + A cos 6) s i n  .] (6)  
Y 

which represents the accelerat ion of t he  seals 
cg when the engine runs a t  a constant speed W .  

These accelerat ions are r e l a t e d  t o  the f i x e d  x-y 
coordinate frame shown i n  Fig. 4. I n  applying 
the l i n e a r  f o r m  o f  Newton's second law, i t  was 
convenient t o  use the c and n d i rec t i ons .  
Thus these accelerat ion components were trans- 
formed using: 

ac = a x  cos a + a s i n  o ( 7 )  Y 

a = -ay s i n  a + a cos o (8) Y 

If we denote the resu l tan t  of the pressure load- 
ing on the seal as P, and P,, def ined as: 

P E  = Paw[A  C O S  6 - A COS cp - h]  

then Newton's laws y ie ld :  

FN I mac - P c  + FC(uC cos 9 - s i n  9 )  (12)  

where m i s  the mass o f  the seal. I n  t h a t  por- 
t i o n  of the cyc le  where the  seal i s  i n  contact 

w i t h  the bore, F pos i t i ve ,  there i s  no - e l a t i v e  
motion between t i e  seal and the  grove i n  the n 
d i r e c t i o n  and i s  equal t o  zero. Se t t i ng  U N  
equal t o  zero wh i l e  the  seal i s  i n  contact  w i t h  
the  bare neglects s t i c k t i o n  which al lows f o r  a 
f r i c t i m a l  f o rce  on the seals s ide  w i t h  a magni- 
tude lower than ~NFN. I n  a dynamic s i t u a t i o n  
when small v i b ra t i ons  are present i t  was f e l t  
t h a t  t h i s  s t i c k t i o n  fo rce  would q u i c k l y  r e l a x  a l -  
lowing the seal t o  assume a minimum energy s tate.  
The angular form o f  Newton's second law was a lso 
enployed t o  f i n d  the l oca t i on  o f  FN: 

= (1 i l ; C  )[ s i n  - ucFc cos 

(13) 

With the forces and loca t i ons  o f  the r t s u l t a n t s  
ac t i ns  on the seal known, the three types o f  
movement were examined. With r h e  seal i n1 , i a l l y  
i n  contact with the bore, the v'lues o f  Fc, FN, 
and x were ca l cu la ted  a t  t h e  successive samp- 
l i n g  po in ts  of the pressure data. Whenever FN 
changes s ign  o r  x 'obtained a value less than 
4 2  the seal had s h i f t e d  t o  the opposite side 
of i t s  groove. For the locat ions where the seal 
was i n  contact w i t h  the leading edge o f  the 
groove, the force equations were adjusted t o  
show the changed pressure d i s t r i b u t i o n .  Separa- 
t i o n  i n i t i a t e d  whenever FC at ta ined a negative 
value. From t h a t  po in t  i n  the cyc le  u n t i l  the 
l oca t i on  where the seal recontacted the bore, Fc 
was set t o  zero i n  Eq. (11) and a,, was ca lcu la-  
ted. I n teg ra t i on  o f  the t ime dependent a,, a l -  
lowed the amount o f  seal separation t o  be traced. 
Since pressure data was ava i l ab le  on ly  a t  d is-  
t i n c t  points, t h i s  i n t e g r a t i o n  was c a r r i e d  out  
numerically. The d i r e c t i o n  o f  the f r i c t i o n a l  
force was adjusted through the  numerical in tegra-  
t i o n  suc9 t h a t  motion o f  the seal r e l a t i v e  t o  i t s  
channel was always retarded. For the operat ing 
condi t ions s tud ied the maximum contact force was 
nominal ly 440 Newtons (100 l b f )  and occurrfd when 
the apex seal was located from 540. t o  620 ATDC. 

i n  Table 1, seal separation was examined. The 
seal dimensions corresponding t o  the engine 
tested were input  i n t o  the previous equations and 
are l i s t e d  i n  the appendix. For t h i s  discussion 
the 0' r o t o r  reference p o s i t i o n  corresponds t o  
the mlnimum chamber volume f o r  a system o f  i n t e r -  
es t  on the in take stroke. The angular p o s i t i o n  
depicts the motion o f  the t r a i l i n g  apex seal. 
Figure 5 shows a 0. crank angle pos t t i on  o f  the 
apex seal under discussion and the pos i t i on  o f  
t h i s  seal a t  various crank angle locations. From 

For each o f  the engine condi t ions described 
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analysis o f  the motoring data, i t  was found t h a t  
l a t e r a l  movemen? o f  the apex seal from the lead- 
ing t o  the t r a i l i n g  s ide o f  i t s  channel occurred 
a t  approximately the same loca t i on  f o r  a l l  runs. 
This switch occurred close t o  465 mainshaft deg- 
rees or a t  a p o s i t i o n  s l i g h t l y  a f t e r  the major 
ax is  o f  the engine as the seal approaches the i g -  
n i t i o n  side. I n  t h i s  pos i t ion,  t he  c e l l  t r a i l i n g  
the seal i s  i n  the i n take  p o r t i o n  o f  i t s  Cycle, 
whi le  the leading c e l l  i s  undergoing compression. 
The analysis predic ted no l i f t  o f f  frm the bore 
a t  t h i s  location. Also i n  the  motoring mode, the 
re tu rn ing  s h i f t  from the t r a i l i n g  t o  the leading 
wa l l  was predic ted t o  occur i n  the  reg ion of 844 
t o  891 mainshaft degrees. This s h i f t  was accom- 
panied by seal l i f t  o f f  i n  fou r  o f  the Six motor- 
ing condit ions tested and occurred between the 
minor and major ax is  o f  the bore on the  i g n i t i o n  
side. 

From analysis o f  the f i r i n g  data, which was 
only  taken a t  the 100 percent t h r o t t l e  pos i t ion,  
i t  was learned t h a t  seal t rans fe r  from the  lead- 
ing t o  the t r a i l i n g  s ide o f  the channel occurred 
i n  the range of 528. t o  545. o f  crank angle. 
h i s  s h i f t  a lso occurred a f t e r  the major ax i s  of 
the housing, as the seal moved toward the i g n i -  
t i o n  side. No seal separation from the bore 
accompanied t h i s  t ransfer .  The predic ted s h i f t  
from the t r a i l i n g  t o  the le!ding s ide occurred 
i n  the range o f  896. t o  920 o f  crank angle. 
This l oca t i on  occurred l a t e r  i n  the  cyc le  as en- 
gine speed increased. Separation from the  bore 
was predicted t o  be present a t  t he  lowest speed 
tested and disappeared as engine speed in-  
creased. A t abu la t i on  o f  these r e s L l t s  i S  
shown i n  Table 2. 

t a l l y  drawn conclusions o f  Matsuura (7, 10) and 
the r e s u l t s  presented here. Matsuura repor ts  a 
t r m s f e r  from the t r a i l i n g  toward the leading 
s ide o f  the channel a f t e r  the minor ax i s  of t he  
engine on the i g n i t i o n  side. He a lso repo r t s  the 
re tu rn  s h i f t  t o  occur between the minor and major 
axis, w i t h  t h i s  movement occurr ing l a t e r  w i t h  in-  
creased engine speed. These observations were 
confirmed w i t h  the exception o f  change I n  loca- 
t i o n  of the leading t o  the t r a i l i n g  s h i f t  with 
engine speed. Matsuura also repor ts  th f t  the 
seal may lose contact f o r  as much as 30 of crank 
angle. When the Seal dimenslons used by Matsuura 
were u t i l i z e d  along w i t h  data which produced a 
lon separation (2053 rpm a t  66 percent t h r o t -  
t le?,  26. of l i f t  off was predicted. One of 
Matsuura's conclusions which was d i f f i c u l t  t o  
confirm, was h i s  observation o f  increased gap 
w i th  increased englne speed a f t e r  2000 rpm. This 
analysis shows the opposite t o  be true. A t  h igh 
engine speeds, dur ing f i r i n g  condit ions, no sepa- 
r a t i o n  occurs. 

FRICTIONAL LOSSES ASSOCIATED WITH SEALING 

A comparison was made between the exper imen- 

I n  t h i s  development the assumption of Coulomb 
f r i c t i o n  w i l l  again be made and any end e f fec ts  
due t o  the complicated j unc t i on  o f  the s ide  and 
apex seals w i l l  be ignored. The basic d e f i n i t i o n  
o f  work 

W =/F d r  (14) 

w i l l  be employed i n  the considerat ion of both 
apex and s ide seals. 

i n g  equation becomes the f r i c t i o n a l  component o f  
t he  contact force, ucF,-, and d r  becomes a 
d i f f e r e n t i a l  displacement along the  t rochoidal  
bore when f r i c t i o n a l  losses are calculated. The 
t rochoidal  bore i s  defined by  adding d perpendic- 
u l a r  displacement o f  magnitude A t o  the expres- 
sions de f i n ing  an epitrochoid, given i n  Eqs. (53 
and (6) :  

I n  the case o f  apex seals F i n  the preced- 

x = e  COS^^ + R cos 0 + A cos(0 + ,) (1s) 

x e sin30 + R s i n  o + A s i n ( o  + ,) (16) 

The displacement d r  may be def ined i n  terms o f  
the angular displacement do u t i l i z i n g  

dr2 = dx2 + dyz 

and d i f f e r e n t i a t i n g  Eqs. (14) and (15). With the 
a i d  o f  Eqs. (14) t o  (16) .  the i n t e g r a l  d e f i n i n g  
o f  the work done by an apex Seal (eq. (13)) may 
now be evaluated as an i n t e g r a t i -  over the angle 
0 .  Since Fc i s  known a t  the iu48 points  where 
the  c e l l  pressures have been sampled, t h i s  i n te -  
g ra t i on  was performed numerical ly f o r  each of the 
operating condi t ions shown i n  Table 1. The nu- 
merical i n teg ra t i on  was c a r r i e d  out u t i l i z i n g  a 
s i x t h  order Simpson's ru le .  

seals was cotnputed i n  a s i m i l i a r  way. Two Side- 
seal ing conf igurat ions were examined. The f i r s t  
model used ccns i s t s  o f  12 s ide seal segments per 
ro to r .  Outer s ide  seals, those c losest  t o  the 
r o t o r  face, were assumed t o  be pushed against the 
end housing by the combined ac t i on  o f  a sp r ing  
and the gas pressure from t h e i r  c e l l s .  The inner 
s ide  seals were assumed t o  be kept  i n  contact  
w i t h  the end housings by the act ion o f  a spr ing 
alone. The second side seal ing system was s imi-  
l a r  t o  the f i r s t  except the f r i c t i o n a l  cont r ibu-  
t i o n  o f  the inner seal was neglected. Slnce the 
f r l c t i o n a l  work done a t  the s ide  seals var ies 
w i t h  l oca t i on  on the seal, t h i s  work must be ca l -  
cu la ted by  evaluat ion o f  the double l n teg ra l :  

F r i c t i o n a l  work associated w i t h  the s lde  

A dynamic analysis o f  the forces involved 
w i th  the v e x  seal and a knowledge o f  the c e l l  
pressures, a1 lows the ca l cu la t i on  o f  the f r i c -  
t i o n a l  losses associated with the seal ing gr id .  

Here dF i s  a f r i c t i o n a l  force ac t i ng  on an 
incremental length d l  o f  t he  seal, and d r  i s  
the distance through which t h i s  f r i c t i o n a l  force 
moves. 

Knol l  , V i  lmann, Schock, and Stumpf 

4 



ORIO(NAL PAGE 1s 
POOR QUALITY OF 

krdsale (1). gives a c i r c u l a r  arc approxima- 
t i o n  o f  the r o t o r  face r e l a t i v e  t o  the center of 
the mainshaft. The same equations were used t o  
approximate the form of the s ide seals w i t h  a de- 
creased rad ius input  t o  account f o r  the distance 
between the r o t o r  face and seal locat ion.  These 
equations are given by: 

y I e s i n  3a + ( 9  + e l s i n k  - $) 
+ ( 9  - e + R)sin(y + 9 - O) (20) 

where 

g = eR[1 + cos($]R[1 + cos(;>] - 2e 

- 27.07. < y < 27.07' ( 2 1 )  

Hcre the l i m i t s  on 7 were ca lcu lated from geo- 
metr ica l  considerations. O i f f e r e n t i a t i o n  of Eqs. 
(19) and (20) and use o f  t he  r e l a t i o n s h i p  givr i l  
by Eq. (16). allows the double i n teg ra l  t o  be 
evaluated numerical ly. 
used f o r  evaluat ion o f  t h i s  double i n t e g r a l .  

Once the work i t l tegra ls ,  Eqs. (13)  and (18) 
have been evaluated, the f r i c t i o n a l  work associ- 
ated w i t h  seal ing i s  known f o r  one r o t o r  revolu- 
t i on .  I t  i s  then necessary on l y  t o  m u l t i p l y  by 
engine speed t o  determine the f r i c t i o n a l  power 
consumed by the seal ing gr id .  This f r i c t i o n a l  
loss i s  not  the same as the mechanical f r i c t i o n a l  
loss (FMEP), associated with engine operat ion 
since i t  neglects such components as o i l  seal 
f r i c t i o n ,  gearing f r i c t i o n  and the f r i c t i o n  asso- 
c i a t e d  with the bearings. However, measurements 
o f  the various f r i c t i o n a l  losses by Cur t iss-  
Wright (9), show t h a t  seal f r i c t i o n  Is the b ig-  
gest s ing le  f r i c t i o n a l  loss, 50 percent h igher  
than i n  the bearings and gears. 

Having determined the gas ses l l ng  g r l d s  
f r i c t i o n a l  horsepower (GSHP), t he  gas seal ing 
mean e f f e c t i v e  pressure (GSMEP) can be ca lcu la-  
ted by: 

Simpson's 113 r u l e  was 

w i t h  vd  being the volume dfsplaced by the en- 
g ine and rpm the engine speed. Figures 6 and 7 
show the value o f  GSMEP as a func t i on  o f  t h r o t t l e  
pos i t i on  f o r  the motored speeds o f  2053 and 2939 
rpm. The ordinates i n  these f igures have normal- 
ized, w i t h  respect t o  the f r i c t i o n a l  c o e f f l c l e n t s  

between the seals and t h e i r  respect ive running 
surfaces. The GSnEP fo r  the apex and side seals 
are p l o t t e d  as a func t i on  o f  mainshaft speed f o r  
the f i r i n g  engine i n  Fig. 8. Table 3 l i s t s  com- 
bined values o f  GSMEP, assuming a c o e f f i c i e n t  of 
f r i c t i o n  o f  0.05 between the apex seal and bore 
and a c o e f f i c i e n t  o f  f r i c t i o n  of 0.10 between the 
s ide  seals and end housings. These values of Y 
were obtained from Matsuura ( 7 ) .  

w i t h  measuring torque dur ing motoring i n  our 
t e s t  apparatus, motoring mean e f fec t i ve  pressure, 
(WEP) was no t  measured dur ing t h i s  ser ies of 
tests .  I n  previous work Schock e t  a l .  ( e ) ,  re -  
po r t s  values o f  FMEP o f  70 kPa and 105 kPa whi le  
motoring a t  2000 rpm and 2900 rpm, respect ive ly .  
Pumping losses were subtracted from MMEP i n  h i s  
measurements. Schock ' 5  experiment was conducted 
i n  a r o t a r y  engine of s i m i l a r  geometry t o  the 
present engine except tha t  i t  was f i t t e d  w i t h  
s tee l  seals. 

The present analysis p red ic t s  GSMEP o f  62.7 
kPa and 63.4 kPa f o r  2053 rpm and 2925 rpn, re -  
spect ive ly .  A 14 gram seal mass was used t o  ap- 
proximate the mass o f  the s t e e l  seals. The pres- 
sure inputs  t o  the model were those recorded 
wh i l e  motoring the engine w i t h  the carborl apex 
seals. The s i m i l a r  values o f  the GSMEP predic- 
ted, i s  accounted f o r  by the fac t  t ha t  pressure 
dominates the GSMEP ca l cu la t i on  and the pressure 
traces dur ing motoring f o r  the two cases o f  i n -  
t e r e s t  were near l y  i den t i ca l .  As can be seen i n  

Because o f  mechanical problems associated 

Figs. 6 and 7, GSiEP i s  on l y  modestly a f fected 
by seal mass. It has been stated by other re -  
searchers tha t  the gas seal ing components may 
account f o r  over 50 percent o f  the t o t a l  f r i c -  
t i o n a l  losses ( 2 .  3 ,  and 9). Using t h i s  assuap 
t i o n  and considering the f a c t  t h a t  the c o e f f i -  
c i e n t  o f  f r i c t i o n  i s  not  we l l  known, these re -  
s u l t s  would appear t o  be i n  good agreement. 

CONCLUSIONS 

The Drimarv conclusion t o  be drawn frorr. t h  S 
work concerns the importance of having accurate 
values of the c e l l  pressures Pa  and Pb near 
the seal t i p .  Previous a n a l y t i c a l  studies have 
no t  had c e l l  data o f  t h i s  type and were unable t o  
p red ic t  the seal separation which was experimen- 
t a l l y  known. It has been demonstrated tha t  a dy- 
namic analys is  can y i e l d  reasonable resu l t s ,  when 
average c e l l  pressures are input  f o r  the pres- 
sures ac t i ng  near the seal. If the pressures 
ac t i ng  i n  the v i c i n i t y  o f  the Seals were known, 
even more accurate p red ic t i ons  o f  separation 
could be made. This analysis has also shown t h a t  
a r o t a t i o n  may i n i t i a t e  seal t rans fe r  between the 
s ide o f  the apex seal channel. Without consider- 
i n g  a r o t a t i o n  t o  i n i t i a t e  movement, i t  was found 
t h a t  under most operating condi t lons tested, seal 
t rans fe r  from s ide t o  side was not  predicted. 
Further, these ca l cu la t i ons  show the f r i c t i o n  
losses due t o  the side seals are on the same or- 
der o f  magnitude ana poss ib ly  larger  than apex 
seal f r i c t i o n a l  losses. F i n a l l y ,  i t  has been 
shown t h a t  a dynamic analysis o f  the seal ing sys- 
tem can r e s u l t  i n  reasonable p red ic t i ons  o f  the 
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frictional losses associated with the gas sealing 
s ys t em. 
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TABLE 1. - CELL PRESSURES AND OPERATING CONDITIONS TESTED 

Engine 
speed 

Operating 
cond i t i on  

~ 

Throt t 1 e 
pos i t ion,  

percent 

~ 

Maximum c e l l  
pressure, 

kPa 

Minimum c e l l  
pressure, 

kPa 

2053 
2053 
2053 
2053 
2939 
2939 
2939 
2939 
4000 
5000 
6000 
7000 

Mot o r  i n g 
Motoring 
Motoring 
Mot o r  i n g 
Motoring 
Motor i n g 
Motor i n g 
Mot o r  i n g 
F i r i n g  
F i r i n g  
F i r i n g  
F i r i n g  

9 
33 
67 
100 
10 
30 
60 
100 
100 
100 
100 
100 

786 
1510 
1655 
1675 
683 
1338 
1662 
1682 
2593 
2937 
3061 
2910 

48 
86 
84 
89 
37 
72 
81 
80 
2 53 
32 5 
3 52 
32 5 

TABLE 2. - APEX SEAL MOVEMENT 

T h r o t t l e ,  
percent 

Separation; 
d i s tance  

T r a i  1 i n g  t o  
l ead ing  
s h i f t ,  

deg 

Separation ; 
d is tance  

Leading t o  
t r a i  1 i n g  

s h i f t ,  
deg mm 

2053 M* 
2053 M* 
2053 M* 
2053 M* 
2939 M* 
2939 M* 
2939 M* 
2939 M* 
4000 F** 
5000 F** 
6000 F** 
7000 F** 

9 
33 
67 
100 
10 
30 
60 

i 00 
100 
100 
100 
100 

468 
464 
45 9 
460 
459 
471 
468 
468 
532 
540 
545 
528 

None 
None 
None 
None 
None 
None 
None 
None 
None 
None 
None 
None 

872 
851 
84 5 
847 
891 
854 
84 5 
844 
896 
909 
914 
920 

871-874 
844-854 
839-848 
83 9-850 

None 
None 

843-848 
842-845 
890-897 

None 
None 
None 

0.0013 
.0559 
.0381 
.0584 
Nor1 e 
None 
.03i)5 
.0008 . 000 3 
None 
None 
None 

*M - Mot 
**F - Fir  

i r i n g  condi 
ng c o n d i t i  

ion. 
1. 



TABLE 3.  - GAS SEALING MEAN EFFECTIVE PRESSURE (GSMEP) 

~~ 

2053 Motoring 
2053 Motoring 
2053 Motoring 
2053 Motoring 
2939 Motoring 
2939 Motoring 
2939 Motoring 
2939 Motoring 
4000 F i r i n g  
5000 F i r i n g  
6000 F i r i n g  
7000 F i r i n g  

- 
T h r o t t l e ,  

percent 

9 
33 
67 
100 
10 
30 
60 
100 
100 
100 
100 
100 

(2 side sea ls )  
GSME P , 

kPa* 

52.0 
70.9 
73.7 
74.3 
50.5 
65.9 
74.0 
74.4 
109 . 7 
129.3 
132.2 
138.4 

(1 side s e a l )  
GSMEP, 

kPa** 

39.9 
58.8 
61.6 
62.2 
38.4 
53.8 
61.9 
63.3 
97.6 
117.2 
126.1 
126.3 

*p = 0.1 side seals.  
**p = 0.05 apex seal . 
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figure I. - Typical sealing grid for a rotary combustion engine. 
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Figure 2 - Transducer locations. 
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Figure 4. - Forces acting on an apex seal. 
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Figure 6. - GSMEP for 2053 rpm motoring. 
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APPENDIX 
APW SEAL DIMENSIONS 

6 = 2 9 2 m m  
h =  83Srnm 
w = 69.85 mm 
A =  1.52mm 
m =  l g  

e =  15mm 
R = 103 m m  

ROTOR DIMENSIONS 

Figure 9. - Apex seal characteristic dimensions 


